3.14 \(\int \sin ^2(a+b x) \sin ^4(2 a+2 b x) \, dx\)

Optimal. Leaf size=76 \[ -\frac {\sin ^5(2 a+2 b x)}{20 b}-\frac {\sin ^3(2 a+2 b x) \cos (2 a+2 b x)}{16 b}-\frac {3 \sin (2 a+2 b x) \cos (2 a+2 b x)}{32 b}+\frac {3 x}{16} \]

[Out]

3/16*x-3/32*cos(2*b*x+2*a)*sin(2*b*x+2*a)/b-1/16*cos(2*b*x+2*a)*sin(2*b*x+2*a)^3/b-1/20*sin(2*b*x+2*a)^5/b

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4286, 2635, 8, 2564, 30} \[ -\frac {\sin ^5(2 a+2 b x)}{20 b}-\frac {\sin ^3(2 a+2 b x) \cos (2 a+2 b x)}{16 b}-\frac {3 \sin (2 a+2 b x) \cos (2 a+2 b x)}{32 b}+\frac {3 x}{16} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]^2*Sin[2*a + 2*b*x]^4,x]

[Out]

(3*x)/16 - (3*Cos[2*a + 2*b*x]*Sin[2*a + 2*b*x])/(32*b) - (Cos[2*a + 2*b*x]*Sin[2*a + 2*b*x]^3)/(16*b) - Sin[2
*a + 2*b*x]^5/(20*b)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 4286

Int[sin[(a_.) + (b_.)*(x_)]^2*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Dist[1/2, Int[(g*Sin[c + d*x]
)^p, x], x] - Dist[1/2, Int[Cos[c + d*x]*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c -
a*d, 0] && EqQ[d/b, 2] && IGtQ[p/2, 0]

Rubi steps

\begin {align*} \int \sin ^2(a+b x) \sin ^4(2 a+2 b x) \, dx &=\frac {1}{2} \int \sin ^4(2 a+2 b x) \, dx-\frac {1}{2} \int \cos (2 a+2 b x) \sin ^4(2 a+2 b x) \, dx\\ &=-\frac {\cos (2 a+2 b x) \sin ^3(2 a+2 b x)}{16 b}+\frac {3}{8} \int \sin ^2(2 a+2 b x) \, dx-\frac {\operatorname {Subst}\left (\int x^4 \, dx,x,\sin (2 a+2 b x)\right )}{4 b}\\ &=-\frac {3 \cos (2 a+2 b x) \sin (2 a+2 b x)}{32 b}-\frac {\cos (2 a+2 b x) \sin ^3(2 a+2 b x)}{16 b}-\frac {\sin ^5(2 a+2 b x)}{20 b}+\frac {3 \int 1 \, dx}{16}\\ &=\frac {3 x}{16}-\frac {3 \cos (2 a+2 b x) \sin (2 a+2 b x)}{32 b}-\frac {\cos (2 a+2 b x) \sin ^3(2 a+2 b x)}{16 b}-\frac {\sin ^5(2 a+2 b x)}{20 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 62, normalized size = 0.82 \[ \frac {-20 \sin (2 (a+b x))-40 \sin (4 (a+b x))+10 \sin (6 (a+b x))+5 \sin (8 (a+b x))-2 \sin (10 (a+b x))+120 b x}{640 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]^2*Sin[2*a + 2*b*x]^4,x]

[Out]

(120*b*x - 20*Sin[2*(a + b*x)] - 40*Sin[4*(a + b*x)] + 10*Sin[6*(a + b*x)] + 5*Sin[8*(a + b*x)] - 2*Sin[10*(a
+ b*x)])/(640*b)

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 67, normalized size = 0.88 \[ \frac {15 \, b x - {\left (128 \, \cos \left (b x + a\right )^{9} - 336 \, \cos \left (b x + a\right )^{7} + 248 \, \cos \left (b x + a\right )^{5} - 10 \, \cos \left (b x + a\right )^{3} - 15 \, \cos \left (b x + a\right )\right )} \sin \left (b x + a\right )}{80 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2*sin(2*b*x+2*a)^4,x, algorithm="fricas")

[Out]

1/80*(15*b*x - (128*cos(b*x + a)^9 - 336*cos(b*x + a)^7 + 248*cos(b*x + a)^5 - 10*cos(b*x + a)^3 - 15*cos(b*x
+ a))*sin(b*x + a))/b

________________________________________________________________________________________

giac [A]  time = 0.60, size = 74, normalized size = 0.97 \[ \frac {3}{16} \, x - \frac {\sin \left (10 \, b x + 10 \, a\right )}{320 \, b} + \frac {\sin \left (8 \, b x + 8 \, a\right )}{128 \, b} + \frac {\sin \left (6 \, b x + 6 \, a\right )}{64 \, b} - \frac {\sin \left (4 \, b x + 4 \, a\right )}{16 \, b} - \frac {\sin \left (2 \, b x + 2 \, a\right )}{32 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2*sin(2*b*x+2*a)^4,x, algorithm="giac")

[Out]

3/16*x - 1/320*sin(10*b*x + 10*a)/b + 1/128*sin(8*b*x + 8*a)/b + 1/64*sin(6*b*x + 6*a)/b - 1/16*sin(4*b*x + 4*
a)/b - 1/32*sin(2*b*x + 2*a)/b

________________________________________________________________________________________

maple [A]  time = 0.96, size = 75, normalized size = 0.99 \[ \frac {3 x}{16}-\frac {\sin \left (2 b x +2 a \right )}{32 b}-\frac {\sin \left (4 b x +4 a \right )}{16 b}+\frac {\sin \left (6 b x +6 a \right )}{64 b}+\frac {\sin \left (8 b x +8 a \right )}{128 b}-\frac {\sin \left (10 b x +10 a \right )}{320 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)^2*sin(2*b*x+2*a)^4,x)

[Out]

3/16*x-1/32*sin(2*b*x+2*a)/b-1/16/b*sin(4*b*x+4*a)+1/64/b*sin(6*b*x+6*a)+1/128/b*sin(8*b*x+8*a)-1/320/b*sin(10
*b*x+10*a)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 65, normalized size = 0.86 \[ \frac {120 \, b x - 2 \, \sin \left (10 \, b x + 10 \, a\right ) + 5 \, \sin \left (8 \, b x + 8 \, a\right ) + 10 \, \sin \left (6 \, b x + 6 \, a\right ) - 40 \, \sin \left (4 \, b x + 4 \, a\right ) - 20 \, \sin \left (2 \, b x + 2 \, a\right )}{640 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2*sin(2*b*x+2*a)^4,x, algorithm="maxima")

[Out]

1/640*(120*b*x - 2*sin(10*b*x + 10*a) + 5*sin(8*b*x + 8*a) + 10*sin(6*b*x + 6*a) - 40*sin(4*b*x + 4*a) - 20*si
n(2*b*x + 2*a))/b

________________________________________________________________________________________

mupad [B]  time = 1.68, size = 110, normalized size = 1.45 \[ \frac {3\,x}{16}-\frac {-\frac {3\,{\mathrm {tan}\left (a+b\,x\right )}^9}{16}-\frac {7\,{\mathrm {tan}\left (a+b\,x\right )}^7}{8}+\frac {8\,{\mathrm {tan}\left (a+b\,x\right )}^5}{5}+\frac {7\,{\mathrm {tan}\left (a+b\,x\right )}^3}{8}+\frac {3\,\mathrm {tan}\left (a+b\,x\right )}{16}}{b\,\left ({\mathrm {tan}\left (a+b\,x\right )}^{10}+5\,{\mathrm {tan}\left (a+b\,x\right )}^8+10\,{\mathrm {tan}\left (a+b\,x\right )}^6+10\,{\mathrm {tan}\left (a+b\,x\right )}^4+5\,{\mathrm {tan}\left (a+b\,x\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*x)^2*sin(2*a + 2*b*x)^4,x)

[Out]

(3*x)/16 - ((3*tan(a + b*x))/16 + (7*tan(a + b*x)^3)/8 + (8*tan(a + b*x)^5)/5 - (7*tan(a + b*x)^7)/8 - (3*tan(
a + b*x)^9)/16)/(b*(5*tan(a + b*x)^2 + 10*tan(a + b*x)^4 + 10*tan(a + b*x)^6 + 5*tan(a + b*x)^8 + tan(a + b*x)
^10 + 1))

________________________________________________________________________________________

sympy [A]  time = 117.94, size = 434, normalized size = 5.71 \[ \begin {cases} \frac {3 x \sin ^{2}{\left (a + b x \right )} \sin ^{4}{\left (2 a + 2 b x \right )}}{16} + \frac {3 x \sin ^{2}{\left (a + b x \right )} \sin ^{2}{\left (2 a + 2 b x \right )} \cos ^{2}{\left (2 a + 2 b x \right )}}{8} + \frac {3 x \sin ^{2}{\left (a + b x \right )} \cos ^{4}{\left (2 a + 2 b x \right )}}{16} + \frac {3 x \sin ^{4}{\left (2 a + 2 b x \right )} \cos ^{2}{\left (a + b x \right )}}{16} + \frac {3 x \sin ^{2}{\left (2 a + 2 b x \right )} \cos ^{2}{\left (a + b x \right )} \cos ^{2}{\left (2 a + 2 b x \right )}}{8} + \frac {3 x \cos ^{2}{\left (a + b x \right )} \cos ^{4}{\left (2 a + 2 b x \right )}}{16} - \frac {57 \sin ^{2}{\left (a + b x \right )} \sin ^{3}{\left (2 a + 2 b x \right )} \cos {\left (2 a + 2 b x \right )}}{160 b} - \frac {109 \sin ^{2}{\left (a + b x \right )} \sin {\left (2 a + 2 b x \right )} \cos ^{3}{\left (2 a + 2 b x \right )}}{480 b} - \frac {\sin {\left (a + b x \right )} \sin ^{4}{\left (2 a + 2 b x \right )} \cos {\left (a + b x \right )}}{10 b} - \frac {2 \sin {\left (a + b x \right )} \sin ^{2}{\left (2 a + 2 b x \right )} \cos {\left (a + b x \right )} \cos ^{2}{\left (2 a + 2 b x \right )}}{5 b} - \frac {4 \sin {\left (a + b x \right )} \cos {\left (a + b x \right )} \cos ^{4}{\left (2 a + 2 b x \right )}}{15 b} + \frac {7 \sin ^{3}{\left (2 a + 2 b x \right )} \cos ^{2}{\left (a + b x \right )} \cos {\left (2 a + 2 b x \right )}}{160 b} + \frac {19 \sin {\left (2 a + 2 b x \right )} \cos ^{2}{\left (a + b x \right )} \cos ^{3}{\left (2 a + 2 b x \right )}}{480 b} & \text {for}\: b \neq 0 \\x \sin ^{2}{\relax (a )} \sin ^{4}{\left (2 a \right )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)**2*sin(2*b*x+2*a)**4,x)

[Out]

Piecewise((3*x*sin(a + b*x)**2*sin(2*a + 2*b*x)**4/16 + 3*x*sin(a + b*x)**2*sin(2*a + 2*b*x)**2*cos(2*a + 2*b*
x)**2/8 + 3*x*sin(a + b*x)**2*cos(2*a + 2*b*x)**4/16 + 3*x*sin(2*a + 2*b*x)**4*cos(a + b*x)**2/16 + 3*x*sin(2*
a + 2*b*x)**2*cos(a + b*x)**2*cos(2*a + 2*b*x)**2/8 + 3*x*cos(a + b*x)**2*cos(2*a + 2*b*x)**4/16 - 57*sin(a +
b*x)**2*sin(2*a + 2*b*x)**3*cos(2*a + 2*b*x)/(160*b) - 109*sin(a + b*x)**2*sin(2*a + 2*b*x)*cos(2*a + 2*b*x)**
3/(480*b) - sin(a + b*x)*sin(2*a + 2*b*x)**4*cos(a + b*x)/(10*b) - 2*sin(a + b*x)*sin(2*a + 2*b*x)**2*cos(a +
b*x)*cos(2*a + 2*b*x)**2/(5*b) - 4*sin(a + b*x)*cos(a + b*x)*cos(2*a + 2*b*x)**4/(15*b) + 7*sin(2*a + 2*b*x)**
3*cos(a + b*x)**2*cos(2*a + 2*b*x)/(160*b) + 19*sin(2*a + 2*b*x)*cos(a + b*x)**2*cos(2*a + 2*b*x)**3/(480*b),
Ne(b, 0)), (x*sin(a)**2*sin(2*a)**4, True))

________________________________________________________________________________________